Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(5): e32694, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749256

RESUMO

Body constitution in traditional Chinese medicine (TCM) refers to the holistic and relatively durable state of an individual, based on the qi and blood assessment, and TCM syndrome is defined as the theoretical abstraction of disease-symptom profiles. The biological basis as related to mitochondria, which produce most of the cellular energy, has not been well studied. This study aimed to elucidate the association of mitochondrial function with TCM body constitution and cold syndrome. Body constitution and cold syndrome in TCM were assessed using the Constitution in Chinese Medicine Questionnaire (CCMQ). The mitochondrial function of peripheral leukocytes was evaluated based on oxygen consumption rate (OCR) and enzyme activity; OCR reflects mitochondrial activity and the capacity to produce adenosine triphosphate (ATP). Cellular adenosine nucleotides and malondialdehyde levels were determined using high-performance liquid chromatography to assess the potential bioenergetic mechanisms. A total of 283 adults participated in this study. Leukocytes from subjects with a balanced constitution had higher OCRs than those with unbalanced constitutions. Yang deficiency and cold syndrome also demonstrated lower energy metabolism, as indicated by reduced basal metabolic rate and cellular levels of ATP and malondialdehyde. Decreased mitochondrial enzyme activity has been observed in individuals with the cold syndrome. Unbalanced body constitutions in TCM impair mitochondrial function in leukocytes, which may contribute to the high disease susceptibility. Cold syndrome is characterized by reduced mitochondrial mass, which may explain its symptoms of low-energy metabolism and cold intolerance.


Assuntos
Constituição Corporal , Medicina Tradicional Chinesa , Adulto , Humanos , Medicina Tradicional Chinesa/métodos , Mitocôndrias , Leucócitos , Trifosfato de Adenosina
2.
Front Oncol ; 12: 899966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936686

RESUMO

Objective: We aimed to investigate the cost-effectiveness of nivolumab plus chemotherapy and nivolumab plus ipilimumab versus chemotherapy in the first-line treatment for advanced esophageal squamous-cell carcinoma (ESCC) patients from a healthcare system perspective in China. Methods: On the basis of the CheckMate 648 trial, a partitioned survival model was constructed to estimate economic costs and health outcomes among overall and PD-L1-positive advanced ESCC patients over a 10-year lifetime horizon. The health-related costs and utilities were obtained from the local charges and published literature. The lifetime costs, life-years, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER) were measured. One-way and probabilistic sensitivity analyses (PSA) were performed to assess the robustness of the model. Results: In the base-case analysis, in overall and PD-L1-positive advanced ESCC patients, the ICERs were $415,163.81/QALY and $216,628.00/QALY for nivolumab plus chemotherapy, and$430,704.11/QALY and $185,483.94/QALY for nivolumab plus ipilimumab, respectively, compared with chemotherapy. One-way sensitivity analyses revealed that patients' weight was the most influential parameter on ICER. The PSA demonstrated that the probability of nivolumab combination therapy being cost-effective was 0% over chemotherapy at the current price and willingness-to-pay threshold ($38,351.20/QALY). When the price of nivolumab and ipilimumab decreased 80%, the cost-effective probability of nivolumab plus ipilimumab increased to 40.44% and 86.38% in overall and PD-L1-positive advanced ESCC patients, respectively. Conclusion: Nivolumab combination therapy could improve survival time and health benefits over chemotherapy for advanced ESCC patients, but it is unlikely to be a cost-effective treatment option in China.

3.
Biomed Chromatogr ; 35(10): e5156, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33955024

RESUMO

Adenine nucleotides and malondialdehyde (MDA) are key components involved in energy metabolism and reactive oxygen species (ROS) production. Measuring the levels of these components at the same time would be critical in studying mitochondrial functions. We have established a HPLC method to simultaneously measure adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, MDA, and uric acid (UA). The samples were treated with perchloric acid followed by centrifugation. After neutralization, the supernatant was subjected to HPLC determination. HPLC was performed using a C18 chromatographic column, isocratic elusion, and UV detection. The detection and quantification limits for these components were determined with standard solutions. The precision, repeatability, and 24-h stability were evaluated using cellular samples, and their relative standard deviations were all within 2%. The reproducibility and efficiency were confirmed with sample recovery tests and the observed oxidative effects of H2 O2 on Jurkat cells. With this method, we discovered the dependence of energy and oxidative states on the density of Jurkat cells cultured in suspension. We also found a significant correlation between UA in serum and that in saliva. These results indicate that this method has good accuracy and applicability. It can be used in biological, pharmacological, and clinical studies, especially those involving mitochondria, ROS, and purinergic signaling.


Assuntos
Adenosina/análise , Cromatografia Líquida de Alta Pressão/métodos , Malondialdeído/análise , Ácido Úrico/análise , Adulto , Humanos , Células Jurkat , Limite de Detecção , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Saliva/química
4.
Biochim Biophys Acta ; 1847(12): 1487-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26301481

RESUMO

The respiratory chain bc1 complex is central to mitochondrial bioenergetics and the target of antiprotozoals. We characterized a modified yeast bc1 complex that more closely resemble Plasmodium falciparum enzyme. The mutant version was generated by replacing ten cytochrome b Qo site residues by P. falciparum equivalents. The Plasmodium-like changes caused a major dysfunction of the catalytic mechanism of the bc1 complex resulting in superoxide overproduction and respiratory growth defect. The defect was corrected by substitution of the conserved residue Y279 by a phenylalanine, or by mutations in or in the vicinity of the hinge domain of the iron-sulphur protein. It thus appears that side-reactions can be prevented by the substitution Y279F or the modification of the iron-sulphur protein hinge region. Interestingly, P. falciparum - and all the apicomplexan - contains an unusual hinge region. We replaced the yeast hinge region by the Plasmodium version and combined it with the Plasmodium-like version of the Qo site. This combination restored the respiratory growth competence. It could be suggested that, in the apicomplexan, the hinge region and the cytochrome b Qo site have co-evolved to maintain catalytic efficiency of the bc1 complex Qo site.


Assuntos
Grupo dos Citocromos b/metabolismo , Genética , Proteínas Ferro-Enxofre/metabolismo , Plasmodium falciparum/genética , Sequência de Aminoácidos , Animais , Catálise , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA